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1. Introduction 

Quillen's work [7] on cohomology algebras of  finite groups, giving a group- 
theoretic interpretation of  their Krull dimension, was a motivation for our work on 
module complexity [1], in which we gave a wide generalization to a result on 
representations of  finite groups. Quillen's results on the structure of  the associated 
varieties is the motivation here. 

Let G be a finite group and k be a field of  prime characteristic p. Let H(G, k) be 
the subalgebra of  the cohomology algebra H*(G,k) spanned by terms of  even 
degrees if p:# 2 while let H(G,k)=H*(G,k) if p =  2. Let Xc  be the prime ideal 
spectrum of  H(G,k) endowed, as usual, with the Zariski topology. For  any sub- 
group H of  G let #n  be the map of  X n  to Xc  induced by the restriction map resH of  
H(G, k) to H(H, k) (so ~on(p), for a prime ideal la of  H(H, k), is the inverse image in 
H(G, k) under resn). With this notation, Quillen has in essence shown that 

= U ue(Xe) 
g 

when E runs over all elementary abelian p-subgroups of  E. 
J.-P. Serre has suggested to us what a proper generalization of  this should be and 

we are pleased to verify his conjectures. We are also indebted to Leonard Scott for 
suggesting the direction to go and to Judy Sally for much help with the ring- 
theoretic work that is involved. 

For any finitely generated kG-module M let Suppo(M) be the set o f  all • in Xo 
such that the localization H*(G,M®S) D is not zero for some finitely generated 
kG-module S. 
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Theorem 1. We have the equality 

Suppc(M) = U OE(suppe(ME)) 
£ 

where E runs over all elementary abelian p-subgroups o f  G and ME is the restriction 
o f  M to E. 

The result is a consequence of  a ring-theoretic result. Let re(M) be the ideal in 
H(G, k) consisting of all elements x such that for all finitely generated kG-modules S 
there is a positive integer j with xYH*(G,M®S)= O. 

Theorem 2. We have the equality 

re(M) = ~) reset(rE(ME)) 
E 

as E runs over all elementary abelian p-subgroups E of  G. 

A similar result has also been established by G. Avrunin [2]. 

2. Preliminary results 

Our notation is as above and before [1]; in particular, all modules are assumed to 
be finitely generated. 

Lemma 2.1. I f  H is a subgroup of  G and M is a kG-module then re(M ) c_ 

resit I (rtt(MH)). 

Proof.  By the lemma of Eckmann and Shapiro, for each kH-module T we have the 
isomorphism of H(G, k)-modules (see [3]) 

H*(H, MH® T) = H*(G, HomkH(kG, MH® T). 

Hence, it suffices to show that if x~ re(M) then a power of x annihilates the right- 
hand side. However, the module HomkH(kG, MH®T), which is the induced 
module, is the tensor product of M and the module induced by T and so our claim 
follows from the definition of re(M). 

Lemma 2.2. I f  P is a Sylow p-subgroup of  G then re(M) =resT, l(rp(Mp)). 

Proof.  In view of the previous result, it suffices to show that re(M) ~ resi, l(rp(Mp)). 
Hence, let xEH(G,k) and assume that x~  res~l(re(Mp)). If S is a kG-module then 
M ® S  is a direct summand of the module induced from Mp(~Sp. Hence, if respx i, 
i>0 ,  annihilates H*(P, Mp®Sp) then it certainly annihilates the summand 
H*(G, M ®  S). Thus, x ¢ re(M). 
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Lemma 2.3. If 

O-'MI -,M-,M2 -.0 

is an exact sequence of kG-modules, xt,xz~H*(G,k) annihilates H*(G, MI) and 
H*(G, Mz), respectively, then xtx2 annihilates H*(G, M). 

Proof. This follows immediately from the long exact sequence connecting the 
cohomology of M, MI and 342. 

A key result of  O. KroU [5] follows from this. Even though we do not require this 
result in what follows, we pause to make the observation. 

Lemma 2.4 (Kroll). I f  H is a normal subgroup of prime index p in G, M is a 
kG-module, A is the annihilator of  H*(G,M) in H*(G, k) while B is the annihilator 
of  H*(H, MH) in H*(H, k) then resH(A p) CB. 

Proof. Let N be the kG-module induced by MH so N=k[G/H]®M. The 
cohomology H*(H, Mx) is a H*(G,k)-module, via restriction, and as such is 
isomorphic with the H*(G,k).module H*(G,N), by the lemma of  Eckmann and 
Shapiro. However, as k[G/H] has a series of  submodules with successive quotients 
isomorphic with the trivial kG-module k, it follows that N has a series of sub- 
modules with all its p successive factors isomorphic with M. Thus, the previous 
result implies that if xl . . . . .  x r e A then xl...Xp annihilates H*(G, N) so we are done. 

Lemma 2.5. I f  G is a p-group and is not elementary abelian while M is a kG.module 
then 

r G(M) = ~) res~ l(r~(MH)) 
H 

where H runs over all the maximal subgroups of  G. 

Proof. First, fix a maximal subgroup H of G and let BH be the inflation to H2(G, k) 
of a generator of H2(G/H, k). We claim that there is a positive integer j ,  depending 
only on H, such that if xeH(G,k) and resH(x)~r~(MH) then x2YH*(G,M)g 
fl~H*(G,M). 

Let us see that this assertion implies the lemma. By Serre's theorem [9], there exist 
a sequence HI,H2 ..... Ht of maximal subgroups of G such that I[ ]/~, =0.  Hence, 
there is a positive integer N such that if x ~ H(G, R) and resH,(X)e rH,(MH,), for all i, 
then xNH*(G,M)=O. Then, if S is any kG-module, M ® S  has a filtration by 
submodules with the successive quotients each isomorphic with M. Hence, by 
Lemma 2.3, a power of x also annihilates H*(G, M® S), as required. 

In order to establish our assertion, we consider the spectral sequence 

H*(G/H, H*(H, M)) =, H*(G, M) 
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as a module over the spectral sequence 

H*(G/H, H*(H, k))) = H*(G, k), 

as in [1]. In particular, each 'column'  HP(G/H,H*(H,M)) is a module over 
H°(G/H, H*(H, k)) = H*(H, k) a, the invariant subring. Suppose x ~ H(G, k) with 
y = r e s H x  and Y¢rH(M/.t), so certainly yeH*(H,k )  a. Hence, there is j > 0  with 
yJH*(H,M)=O. This implies that yJHP(G/H,H*(H,M))=O since G / H  is cyclic 
and HP(G/H, H*(H, M)) is a quotient of  a submodule of  H*(H, M) (the submodule 
of  G/H-invariants i f p  is even and the submodule annihilated by the norm in k(G/H) 
if p is odd). Also, since yJ ~ H°(G/H, H*(H, k)), yJ acts on HP(G/H, H*(H, k)) in 
the expected way. It now follows that y JEt p'*(M) = 0 for each r = 2, 3 . . . . .  o0. Let 

H*(G, M) = F°H*(G, M) ~ FIH*(G, M) ~_ ... 

be the filtration associated with this spectral sequence. Taking r= ~ we get that 
xJ(FP/FP+t)=yJ(E~*)=O. In particular, x2JF°~F 2. But, by Lemma 4.1 of  [1] 
FZH*(G, M)=/~t-tH*(G, M), so the lemma is proved. 

Lemma 2.6. I f  1~ is a prime ideal o f  H(G, k) then p ~ Suppa(M ) if, and only if, 
contains ra(M ). 

Proof.  First, suppose that !a ~ Suppa(M)  so there is a kG-module S such that when- 
ever x ~ H( G, k), x ~ p, then xH *( G, M ® S ) ~ O. But x ~ 13 implies that x i ~ p whenever 
i > 0  so x~ ra(M). 

On the other hand, suppose ~ ~ rG(M). If x~  ;~ there is a kG-module S such that 
xYH*(G, M ® S ) ~  0 for all j >  0. Hence, by Lemma 2.3, there is a simple kG-module 
S with this property so the same is true if we take S to be the direct sum of  simple 
kG-modules, one of  each isomorphism type. This module works for all x~l~ so 
p ~ Suppa(M).  

3. Proofs of  the main theorems 

We begin with the proof  of  Theorem 2. Since the result is a tautology if G is 
elementary we assume otherwise. If G is a p-group and H is a maximal subgroup of  
G then, by induction, 

rH(M/./) = A res~:'(r~(ME) 
E 

where E runs over all elementary abelian subgroups of  H and resE is the restriction 
from H to E. Since every elementary abelian subgroup of  G is contained in a 
maximal subgroup of  G, we are done in view of  Lemma 2.5 and the transitivity 
property of  restriction. 

Now let G be arbitrary. If  E and E '  are conjugate elementary abelian subgroups 



Varteties and elementary abelian groups 225 

then reset(re(Me))= resE.(rE.(Me,) so we may restrict attention to the elementary 
abelian subgroups of  a fixed Sylow p-subgroup of  G. However, Lemma 2.2 and the 
fact that the theorem holds for p-groups now imply the theorem. 

In view of  Lemma 2.6, in order to establish Theorem 1, we must show that for 
each prime ideal p of  H(G,k) containing rc(M ) there is an elementary abelian 
p-subgroup E and a prime ideal q of  H(E, k)containing re(Me) such that p = res~ t(q). 
By Theorem 2, p ~ res~'(rE(Mg)) for some E. The conclusion now follows from a 
'going up'  argument as follows. 

Let re(ME) = N q, be the primary decomposition of  re(Me) where each qi is a 
prime ideal since re(Me) is its own radical. Since p 2 res~l(rg(Mg)) there is i with 
p ~ res~l(qi)---ri. Applying the 'going up'  theorem to the finite ring extension of  
H(G, k)/ri by H(E, k)/qi yields the existence of  a prime ideal q of  H(E, k) containing 

q,, and hence re(Me), with p = res~l(q). 

4. Earlier results 

In this last section, we shall discuss how Quillen's theorem [7] and our main result 
on complexity [1] follows from the theorems of  this paper. First, Quillen's theorem 
states that the Krull dimension of  H(G,k), denoted dim H(G,k), equals the 
maximum of  the ranks of  the elementary abelian subgroups of  G. If E is such a 
subgroup than it's rank equals dim H(E, k) as H(E, k) is a finite extension of  a poly- 
nomial algebra on as many generators as the rank of  E. Since H(E, k)/rE(k) is a 
finite ring extension of H(G,k)/res~t(re(k)), it follows that 0e  preserves the 
dimension of  closed subspaces. Hence, 

dim Xc  = dim I,J ~oE(XE) 
e 

= max dim OE(XE) 
E 

= max dim XE 
E 

as required. 
Before proceeding to the complexity result we want to sketch how one may prove 

Quillen's theorem very directly without invoking any geometric concepts. We rely 
on the characterization of  the Krull dimension of  a graded ring of  the type we have 
in terms of  the growth rate (Definition 2.1 of  [l]) of  the homogeneous components. 
(See the appendix below for a proof.)  One first proves that dim 1-1((7, k) >_ dim H(H, k) 
for any subgroup H of  G by relying on the fact that the latter is a finite module over 
the former [3]. Similarly, one proves dim 1-1((7, k )=  dim H(P, k) for a Sylow p-sub- 
group. Finally, one shows for a p-group G, which is not elementary abelian, that 
dim 11((7, k) equals the maximum of  the dim H(H, k), as H runs over the maximal 
subgroups of  G, as follows. For each maximal subgroup H of  G note that the growth 
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rate of  F°H*(G,k) /F2H*(G,k)  is bounded by that of  ( ~ ) p ~  HP(G/H,H*(H,k))  
and hence by the growth rate of  H(H, k). The equality F2H*(G, k) = BHH*(G, k) and 
Serre's result on products of  Bocksteins show that the filtration 

H*(G, k) ~ fill, H*(G, k) ~ t~H2#HI H*(G, k) ~ ... 
terminates. 

In view of  Theorem l, to prove the theorem on complexity, we need only show 
that dim Suppc(M) equals the complexity of  M. Let S be the direct sum of  simple 
kG-modules, one of  each isomorphism type. Applying the appendix below to the 
H(G,k)-module H * ( G , M ® S ) ,  we see that the Krull dimension of H(G,k)/rG(M) 
equals the growth rate of  dim G k ( G , M ® S )  - which is the complexity. 

5. Appendix 

The characterization of  Krull dimension in terms of  growth rates seems to be 
known to workers in this area but as no proof  of  the precise result we want is 
available in the literature we shall give ours. [See Smoke [10], Theorem 5.5 and 
Matijevic [6], Theorem 1.2 for closely related facts.] 

Fix a finitely generated commutative algebra A over the field k which is graded 
over the non-negative integers with A0 = k. 

Lemma 5.1. There is a positive integer N and rationai polynomials f0, f l  . . . . .  f N- 1 
such that, with finitely many exceptions, 

dim An =fr(n) 

whenever n -- r (modulo N).  

Proof .  Let zl . . . . .  zs be a set of  generators for A each of  which is homogeneous of  a 
positive degree. Let N be the least common multiple of  the degrees of  the z,. Let w i 
be the power of  zi which has the degree N. Hence, A is a finitely generated module 
over K[w I . . . . .  Ws]. Let 

Aft)= (~) Ai+jN 
yffi0 

for i=O,l . . . . .  N - I .  Hence A ti) is a finitely generated graded module for 
K[w I . . . . .  Ws] with At+yN the homogeneous summand of degree j .  The result now 
follows from the theorem of  Hi lber t -Serre  [11, p. 232 of  Volume II] applied to 
each A ti). 

Now let B be the vector space over k, graded over the non-negative integers, with 
Bn= (~,~0 At. Lemma 5.1 yields immediately that (with y as in [1]) y(B)= y(A)+ 1. 
Hence, we need only show that y(B) equals the Krull dimension d of A. Since A is of  
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dimension d there is a polynomial subalgebra k[x~ . . . . .  xd] of  A finitely generated as 

a module over it. Let Yl . . . . .  Ye be module generators. 
First, we show that y(B)>_d. Let M be a positive integer such that the i-th com- 

ponent  o f  every x j  is zero if i > M .  We may also assume, without loss of  generality 
that the zero component  of  each xj is also zero, so with the obvious notation 

Xj --"-Xjt + "'" +XjM.  

Hence, all the monomials  

with M(al  + . ' .  + a a ) < n  are linearly independent and lie in B,,. This proves the 
desired inequality. 

Finally, we must prove that y(B)_< d. It suffices to describe a spanning set for A, 

take the projection of this set on A 0 ~  " - -~An = Bn for each n, count the number of  
non-zero projections and have this number  of  the right size. For the spanning set we 

take all monomials  

x f '  ... x ~ y i ,  

1 _<j_< e. In order to have a non-zero projection on B. we must have at + "" + aa <- n, 

since the zero components  of  each xi  is zero; this proves the final inequality. 

We have just seen that the growth y(A) of  the A-module A is d -  1. It follows that 
if M is a faithful finitely generated graded A-module  then y(M) = d -  I. Indeed, M 
is a homomorphic  image of  a free module so y ( M ) _ < d -  1. Moreover,  if M has 
(homogeneous) generators tnt . . . . .  mr then the A-module  A is isomorphic with a 
submodule of  M ~ . - . ( ~ M  (r copies of  M with a c A  mapped to (am t . . . . .  am,))  so 

y ( M )  > d -  1. 

References 

[1] J. Alperin and L. Evens, Representations, resolutions and Quillen's dimension theorem, J. Pure 
Appl. Algebra 22 (1981) I-9.  

[2] G. Avrunin, Annihilators of cohomology modules, J. Pure Appl. Algebra, to appear. 
[3l L. Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961) 224-239. 
[4] J. Johnson and J. Matijevic, KruU dimension in grade rings, Comm. Algebra 5 (1977) 319-329. 
[5] O. Kroll, Complexity and Elementary Abelian Subgroups, Thesis, University of Chicago (1980). 
[6] J. Matijevic, Some Topics in Graded Rings, Thesis, University of Chicago 0973). 
[7] D. Quillen, A cohomological criterion for p-nilpotence, J. Pure Appl. Algebra 1 (1971) 361-372. 
[8] D. Quillen and B. Venkov, Cohomology of finite groups and elementary abelian subgroups, 

Topology 11(1972) 317-318. 
[91 J.P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965) 413-420. 

[10] W. Smoke, Dimension and multiplicity for graded algebras, J. Algebra 21 (1972) 149-173. 
[11] O. Zariski and P. Samuel, Commutative Algebra, Vol. II (Van Nostrand, New York, 1960). 


